
[Patil, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [560]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

FPGA IMPLEMENTATION OF A COMPACT AES ALGORITHM WITH S-BOX

OPTIMIZATION
Ms.PatilSarika B., Prof. Padma Lohiya

Electronics and Telecommunication Engg,D.Y Patil College Of Engg, Akurdi, Pune ,India

Abstract
This paper proposes a compact AES algorithm to achieve less slice consumption of FPGA. Proposed design is based

on iterative round looping architecture. S-box is implemented using composite field arithmetic which requires less

area than lookup table.We used same S-box for key expansion block. This design supports 128-bits key size. It uses

8-bit data path to decrease the parallelism of operations and therefore reduces the hardware utilization.Synthesis of

our complete design is done using Xilinx ISE 14.5 and implemented on Spartan 3 FPGA using VHDL language.

GUI is developed in visual basics 6.0. This GUI is used to send a plain text and key for encryption. Decrypted data

is also displayed on the same. The results from the Place and Route report indicate that area occupied by this

architecture is 680 slices. This design is very well suited for small embedded applications.

KEYWORDS: AES, LUT, Sbox, Composite field arithmetic, Galois field, GUI.

INTRODUCTION
AES is a FIPS approved cryptographic

algorithmwhich maintains safty and is used to

provide security to electronic data[1]. It is useful to

transmit and receive data through insecure networks.

In 2001 National Institute of Standard and

Technology (NIST)replaced previous encryption

standards like DESand triple DES with AES

algorithm because of its efficiency ,implementation

and flexibility. As AES is widely adapted for various

applications from high end computers to loe power

portable devices like RFID tags , Bluetooth ,smart

cards etc. No of hardware architecures toimplement

AES were proposed to meet different requirements.

Two most important are high throughput design and

lowareadesing . First one is used to achieve highest

operating frequency and second is used to minimize

the size of design and lower the power comsumption.

This paper focus on second requirement. A compact

AES algorithm with combinational logic based S-box

is implemented on Spartan 3 FPGA . Proposed design

occupies 680 slices .

AES ALGORITHM
The Advanced Encryption Standard is a subcategory

of much larger encryption algorithm known as

Rijndael. The AES algorithm is a symmetric cipher in

which a common secret key is used for both

encryption and decryption. AES is a block cipher as

it operates on fixed-length group of bits.AES has a

block size of 128 bits and a key size of 128,192 and

256 bits which terns in 10, 12 and 14 rounds of

operation respectively. After these rounds of

operation, eachbit of cipher text depends on each bit

of plain text. Contrasting DES, the decryption

algorithm differs from encryption in AES.Although

same steps are used in encryption and decryption,the

order in which these steps are applied are

different.But for the last round all other rounds are

identical and the last round doesn’t have mix column

operation. AES calculations are done in a Galois field

of GF (28).

The AES carry out four different

transformations:Substitute-Bytes,ShiftRows,

mixColumns and AddRoundKey.Similarly, the

inversed versions of these conversions are used in

decryption but the AddRoundKeyoperation (bit-wise

xor) is same. By using a separate key schedule

algorithm,different round keys are generated for each

round of operation[5]. The block diagram of the AES

algorithm is shown in Fig.1

A. SubBytes

SubByte transformation is a highly non-linear byte

substitution where each byte inthe state array is

replaced with another from a lookup table called an

http://www.ijesrt.com/

[Patil, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [561]

S-Box. This S-boxis invertible,is constructed by

composing two transformations:

1. Takethe multiplicative inverse in the finite

fieldGF(28),

2.Apply the affine transformation (over GF(2)).

Figure 1 Encryption Process

B.ShiftRows

In ShiftRowstransformation ,the bytes in the last

three rows of state are cyclically shifted over

different numbers of bytes .In ShiftRows operation it

is shifted left.There is noshift in the first row whereas

the second,third and fourth rows are shifted by 1, 2

and 3 times respectively which is shown in fig3.

Figure 2 ShiftRow Example

C. MixColumns

The mixcolomn transformation operates on the state

column by column considering each column

as a four term polynomial over GF (28). Each

polynomial is multiplied by the fix polynomial c(x)

modulo the polynomialk(x) as shown below [2].

𝑐(𝑥) = {03}𝑥3 + {02}𝑥2 + {01}𝑥 + {01} (1)

𝑘(𝑥) = 𝑥4 + 1 (2)

 For the 128 bit key, each column is

multiplied by the known matrix) which is given by

C = [

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

] (3)

In this matrix, multiplication by one means remain

unchanged, multiplication by two means shitting byte

to theleft and multiplication by three means shifting

to the left and then EX-ORing the original value[5].

D. AddRoundKey

In addroundkeybitwise XOR operation is performed

between the RoundKey and the output from

Mixcolumn.The key isobtained from the Rijndael’s

Key Schedule.

E. Key Expansion Logic

The initial RoundKey will be the same as the first

key in encryption where as in decryption it will be

the last RoundKey. The RoundKey for all other

rounds are generated from the Key Expansion

routine.

Round keys are generatedearlier and stored in

memory or generated on the fly in the prior, the

round keys can be read out frommemory by using

corresponding addresses for high speed applications.

In the latter, the round keys are generated onthe fly

which requires space only for single roundkey[3].

COMPACT SBOX IMPLEMENTATION

This section illustrates the steps involved in

constructing the multiplicative inverse module for the

S-Box using Composite Field Arithmetic. . The

multiplicative inversecomputation will first be

covered and the affine transformation will then

follow to complete the methodology involved for

constructing the S-Box for the SubByteoperation[4].

The individual bits in a byte representing GF(28)

element can be viewed as coefficients to each power

term in GF(28) polynomial. For instance, 100010112

is representing the polynomial q7 + q3 + q + 1 in

GF(28). The multiplicative inverse circuitinGF(28)

can be produced as shown in Figure 3.

http://www.ijesrt.com/

[Patil, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [562]

The Substitute Byte computes the multiplicative

inverse of the individual byte ofthe state matrix

followed by affine transformation. The multiplicative

inverse computation will be done by dividing the

more complex GF(28) to lower order fieldsof GF(2),

GF(22) and GF((22)2).

Figure 3 Block diagram of S-box implementation

The figure 2 shows the propagation of the input data

of into a composite field based S-Box. The input data

will first undergo the multiplicative inversion. The

values at which the high and low nibbles are

transformed to are indicated by the 4 bit numbers

outside of the logical blocks. The example can be

worked by hand since the tables containing the

results for GF (24) multiplication and multiplicative

inverses are provided. After theinverse isomorphic

mapping operation of the multiplicative inversion

module, the Affine Transformation is applied to the

multiplicative inverse to yield the S-Box substituted

value for the given input of 0xCB. Doing so yields an

output of 0xF2 which agrees with the S-Box table

provided in [1].

The legends for the blocks within the multiplicative

inversion module from above are illustrated in the

table 1 below.

Table 1: Legends for the blocks within the multiplicative

inversion module

Symbol Description

𝛿 Isomorphic Mapping to Composite

Fields X -1 Multiplicative inversion in GF(24)

X 2 Squarer in GF(24)

X Multiplication in GF(24)

δ -1 Inverse Isomorphic Mapping to

GF(28)

The multiplicative inverse computation will

be done by decomposing the morecomplex GF(28) to

lower order fields of GF(21), GF(22) and GF((22)2)

[3] In order to complete the above, the following

irreducible polynomials are used.

GF (22) GF (2) :X2+X+1

GF ((22)2) GF (22) : X2+X+φ

GF (((22)2)2) GF ((22)2): X2+X+ λ

Where φ = {10}2 and λ = {1100}2.

In matrix form, the affine transformation

element of the S-box can be expressed [4] as

[

𝑏0

′

𝑏1
′

𝑏2
′

𝑏3
′

𝑏4
′

𝑏5
′

𝑏6
′

𝑏7
′]

=

[

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1]

[

𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6

𝑏7]

+

[

1
1
0
0
0
1
1
0]

(4)

The sub operations involved in computing the

multiplicative inverse is grouped to implement S-Box

in sucha way to reduce both area and critical path that

results inreduced power consumption.

The input and output for Sbox block is 8 bit. Output

of Sbox is 0xED for input value 0x53 which agrees

with Sbox table. The area occupied by the Sbox is

41slices out of total 3,583 slices.

RESULTS AND DISCUSSION

The synthesis is done using Xilinx ISE 14.5 by using

VHDL language on a Xilinx Spartan-III X3CS400-

5PQ208 FPGA. GUI is implemented using visual

basic 6.0.This GUI is used to accept a text and

cipherkey entered by user for encryption as shown in

fig 6 . It show encryptedcipher text , all the keys

generated and decrypted data in each round as shown

in fig 7. It shows final decrypted data which is same

to plaintext. Setting of Baud rate and COM port can

be done in the software.

Resource utilization of AES Encryption core design

is shown in Table 2, and resource utilization of AES

Encryption core with Sbox using lookup table is

shown in Table 3. Comparing the results it can be

stated that the implemented design of AES

Encryption core uses less area of the FPGA and is

more efficient. The AES Encryption core with lookup

table uses 1.5 times the number of slices used in this

AES design.

http://www.ijesrt.com/

[Patil, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [563]

Figure 4 Plain text and key entered by User

Figure 5 Cipher text , Keys and Decrypted Plain Text

Table 2 Device utilization-AES Encryption core.

Logic utilization Used Available Utilization

No of slice flip-lops 680 7,168 9%

No of 4 inputLUT 2,458 7,168 34%

No of occupied

slices

1431 3,584 39%

No of bonded

IOB’s

4 141 2%

Table 3 Device utilization-AES Encryption core with

Lookup Table

Logic utilization

Used

Available Utilization

No of slice flip-

flops

922 7,168 12%

No of 4 input

LUT’s

2,932 7,168 40%

No of occupied

slices

1,729 3,584 48%

No of bonded

IOB’s

4 141 2%

CONCLUSION
In this paper a solution for compact AES encryption

on FPGA is presente. The SBox is designed by using

composite field arithmetic

andresultingimplementation fits with minimum

number of slices.As compared to the typical ROM

based lookup table, the presented implementation is

capable of small area occupancy This make it

suitable for security focused low resource

applications.

REFERENCES
[1] National Institute of Standards and

Technology(NIST),Advanced Encryption

Standard (AES) Federal Information

Processing Standards Publication 197 (FIPS

PUB 197), Nov.2001

[2] T. Manoj Sharma and R. Thilagavathy,

"Performance Analysis of Advanced

Encryption Standard for Low power and Area

Applications" in Proc. IEEE on ICT,2013, pp

967-972

[3] P. Hamalainen, T. Alho, M. Hannikainen, and

T.D. Hamalainen, "Design and Implementation

of Low-Area and Low-Power AES Encryption

Hardware Core", in Proc. DSD, 2006, pp.577-

583.

[4] E.-N. Mui "Practical Implementation of

Rijndael S-Box Using combinational

logic", 2007. [online] Available:http://www.xe

ss.com/projects/Rijndael_SBox. pdf

[5] RajenderManteena, “A VHDL Implemetation

of the Advanced Encryption Standard-Rijndael

Algorithm”, College of Engineering University

of South Florida, 2004.

T. Good and M. Benaissa, “AES on FPGA

from the Fastest to the Smallest,” Lecture

Notes in Computer Science, vol.3659, pp.427-

440, Sep. 2005.

http://www.ijesrt.com/

